Dynamics of Actin Waves on Patterned Substrates: A Quantitative Analysis of Circular Dorsal Ruffles

نویسندگان

  • Erik Bernitt
  • Cheng Gee Koh
  • Nir Gov
  • Hans-Günther Döbereiner
چکیده

Circular Dorsal Ruffles (CDRs) have been known for decades, but the mechanism that organizes these actin waves remains unclear. In this article we systematically analyze the dynamics of CDRs on fibroblasts with respect to characteristics of current models of actin waves. We studied CDRs on heterogeneously shaped cells and on cells that we forced into disk-like morphology. We show that CDRs exhibit phenomena such as periodic cycles of formation, spiral patterns, and mutual wave annihilations that are in accord with an active medium description of CDRs. On cells of controlled morphologies, CDRs exhibit extremely regular patterns of repeated wave formation and propagation, whereas on random-shaped cells the dynamics seem to be dominated by the limited availability of a reactive species. We show that theoretical models of reaction-diffusion type incorporating conserved species capture partially the behavior we observe in our data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fronts and waves of actin polymerization in a bistability-based mechanism of circular dorsal ruffles

During macropinocytosis, cells remodel their morphologies for the uptake of extracellular matter. This endocytotic mechanism relies on the collapse and closure of precursory structures, which are propagating actin-based, ring-shaped vertical undulations at the dorsal (top) cell membrane, a.k.a. circular dorsal ruffles (CDRs). As such, CDRs are essential to a range of vital and pathogenic proces...

متن کامل

Investigating circular dorsal ruffles through varying substrate stiffness and mathematical modeling.

Circular dorsal ruffles (CDRs) are transient actin-rich ringlike structures that form on the dorsal surface of growth-factor stimulated cells. However, the dynamics and mechanism of formation of CDRs are still unknown. It has been observed that CDR formation leads to stress fibers disappearing near the CDRs. Because stress fiber formation can be modified by substrate stiffness, we examined the ...

متن کامل

Get off my back! Rapid receptor internalization through circular dorsal ruffles.

Internalization and subsequent trafficking of receptor tyrosine kinases (RTKs) play an important role in the modulation of growth factor-stimulated signaling events that affect different cellular processes, from cell growth and mitosis to motility and invasion. The intracellular transport of these receptors has traditionally been viewed as being initiated via clathrin-coated pits. However, nonc...

متن کامل

ARAP1 regulates the ring size of circular dorsal ruffles through Arf1 and Arf5

Small guanosine triphosphatase (GTPase) ADP-ribosylation factors (Arfs) regulate membrane traffic and actin reorganization under the strict control of GTPase-activating proteins (GAPs). ARAP1 (Arf GAP with Rho GAP domain, ankyrin repeat, and PH domain 1) is an Arf GAP molecule with multiple PH domains that recognize phosphatidylinositol 3,4,5-trisphosphate. We found that growth factor stimulati...

متن کامل

A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization.

Cells form transient, circular dorsal ruffles or "waves" in response to stimulation of receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor. These dynamic structures progress inward on the dorsal surface and disappear, occurring concomitantly with a marked reorganization of F-actin. The cellular function of these structures is l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015